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Interpolation formula between very low and intermediate-to-high damping Kramers escape rates
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It is shown that the Mel'nikov-Meshkov formalism for bridging the very low dampitvd-D) and
intermediate-to-high dampingfHD) Kramers escape rates as a function of the dissipation parameter for
mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of
single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy
so that both regimes of damping occur. The procedure is illustrated by considering the particular nonaxially
symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uni-
form field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is
found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck
equation, provided the external field is large enough to ensure significant departure from axial symmetry, so
that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are
valid.
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[. INTRODUCTION potential of the magnetocrystalline anisotropy.
An important comment should be made concerning the
Renewed interest in the Kramers theory of escape ratef@ct that the axially asymptotic equation for the escape rate is
[1] has been stimulated by the recent success of Wernsdorfeglid for all values of the damping. First we remark that the
et al. [2] in isolating single-domain ferromagnetic particles Fokker-Planck equation for the longitudinal relaxation of
and in measuring the time of reversdbr barriers signifi- ~SPins(the second state variable, namely, the azimuthal angle
cantly greater than the thermal energy, the Kramers escape of the magne_tization vector manifests it;elf merely as a
rate) of the magnetization of these particles as a function ofitéady precession of that vedtois effectively a one-

the damping parameter predicted by théeNBrown [3,4] dimensional Fokker-Planck equatiOfPE), since the inertia
theory of superparamagnetic relaxation. of the particle plays no role, so that escape rates calculated

In effect, the latter theory is an adaptation of the Kramersfrom it are valid for all values of the damping parameter. In

theory of chemical reaction rates to longitudinal relaxation ofthe Kramers problem for mechanical particles, on the other

o . . ; . hand, the underlying FPE in position and momentum as state
the magnetization of single-domain ferromagnetic particles

. : variables always has a two-dimensional state space and a
The validation of that theory by experimefg,5] further- reduction to a one-dimensional FRI& this case the Smolu-

more confirms the Kramers conception of a thermal relax o ski equationcan be achieved only through the strong
ation process over a potential barrier. The Kramers theory g amping of the momentum. The particle problem may also

chemical reaction rates was initially adapted to longitudinalye redquced to a one-dimensional problem if the damping is
relaxation of spindi.e., reversal of the direction of preces- very small by writing the FPE in angle-action variables, av-
sion of the magnetic moment over the internal anisotropyeraging over the fast angle variable and considering the slow
potential barrier by Brown [4]. In his first calculations of diffusion of the(total) energy. Thus in the mechanical Kram-
escape rates, however, he confined himself to axially symers problem, the following three regimes of damping appear.
metric potentials of the magnetocrystalline anisotr¢gy. (@ Intermediate-to-high dampingHD): the general pic-
Hence no coupling between the longitudinal and the transture in this cas¢6] being that inside the well the distribution
verse modes of motion exists thus the longitudinal mode aréunction is almost the Maxwell-Boltzmann distribution ob-
governed by a single state variable, namely the colatitiyde taining in the depth of the well. However, near the barrier the
the polar angle of the magnetization vector. distribution function deviates from the equilibrium distribu-
As a result of this consideration Brown was able to dem-ion due to the slow draining of particles across the barrier.
onstrate that the Kramers escape rate theory for particles mashe barrier region is assumed to be so small that one may
be easily adapted to yield an expression for the escape ratggpproximate the potential in this region by an inverted pa-
for spins which is valid for all values of the damping param-rabola.
eter in his Langevin equation and for any axially symmetric (b) Very low damping(VLD): here the damping is so
small that the assumption i@, namely that the particles
approaching the barrier region from the depth of the well,
*Corresponding author. have the Maxwell-Boltzmann distribution completely breaks

1063-651X/2001/6@)/02110212)/$15.00 63021102-1 ©2001 The American Physical Society



DEJARDIN, CROTHERS, COFFEY, AND McCARTHY PHYSICAL REVIEW B3 021102

down. Thus the region where deviations from that distribu- As far as single-domain ferromagnetic particles are con-
tion occur extends far beyond the interval where the potentiaterned, the equivalent of the Kramers IHD formula for spins
shape may be approximated by an inverted parabola. Thusas derived by Brown in 19788], while the corresponding
we may now, by transforming the FPE into an equation inLD formula was established in 1990 by Klik and Gunther
the energy and phase variables, and by supposing that tfh8]. Furthermore, the latter authors emphasised that Brown’s
motion of a particle attempting to cross the barrier is almosf979 IHD calculation was in effect a special case of Langer’'s
conservative, and is the librational motion in the well of atreatment of the decay of metastable stafe. In addition,

particle with energy equal to the barrier energy, derive arfhe LD formula of Klik and Gunther holds for escape from a

equation of diffusion in energy. We remark that the assump_singIe well, while in magnetic relaxation of single-domain

tion of almost conservative behavior meaning that the energffrromagnetic particles, the Gibbs free energy has in general

loss per cycle is almost negligible and is equal to the friction® bistable structure due to the anisotropy term. Hence their

times the action of the undamped motion at the barrier en?jormula does not take account of the possibility of recross-

ergy ensures that the Liouville term in the FPE vanished"9S of the anisotropy barrier by the magnetic moments in
(unlike in IHD where there is strong coupling between theth® LD case. , .
diffusive and Liouville term so that one is left with only the ~ FOr the sake of clarity, we recall that the original Kramers
diffusion term in the energy variable. The dependence on thBroblem, referring to the undamped motion, is characterized
phase having been eliminated by averaging the distributioR the state variables, namelyihe position coordinate and
function in energy-phase variables along a closed trajector}) the€ momentum of a particle of massmoving in a poten-
of the energy since we assume a librational motion in thdi@! V(d). Thus the Hamiltonian is
well. 2

(c) An intermediatecrossover region where neither IHD E= b~ +V(Q) (1.2)
nor VLD formulas apply: in this region neither of the ap- 2m
proaches to the problem may be used. In contrast to the VLD
case the Liouville term in the FPE does not vanish meanin
that one cannot average out the phase dependence of t
distribution function which is ultimately taken account of by JE JE
constructing from the FPE an equation for the distribution g= p=
function with the energy and action as independent variables.
This procedure allows one to express the energy distribution

function at a aiven action. which in this case mav b . In the treatment of the escape rate given by Mel'nikov
9 i . Yy D€ Manipus 4 Meshkov, which yields a formula valid for all values of
lated so as to pose the problem in terms of the energy lo

: . %Fhe friction for systems governed by the Hamiltonidn), it
per c_ycle at the barrier energy as a Wiener-Hopf equations »ssumed that one may write the escape rate as
yielding an integral formula the product of which with the

IHD escape rate yields an expression for the escape rate k=AKsT, (1.3
which is valid for all values of the damping, so allowing the
complete solution of Kramers's problem. The integral for-wherexrgris the escape rate predicted by the transition state
mula derived from the Wiener-Hopf equation effectively al- theory (TST) which for a double-well potential reads as
lowing for the coupling between the Liouville and dissipa-
tive term in the Kramers equation when written in terms of
energy-phase variables which is ignored in the VLD limit.
However, as mentioned above the analogous spin problem
is fundamentally different in that the one-dimensional FPE inHere, E; is the energy barrier a given particle has to over-
the single state variabl& does not arise frordamping of the come when it is in well and w; is an attempt frequency in
momentunbut rather fromaxial symmetryThus in order to  well i (which is the frequency of oscillation in that welln
construct Kramers formulas—equivalent to that for mechani£qg. (1.3) A is a quantity termed the prefactor and contains
cal particles—for spins, one has to consider in Brown’scorrections to the TST rate, namely, the effects of the sur-
Fokker-Planck equation nonaxially symmetric potentials ofroundings of the particle.
the magnetocrystalline anisotropy, i.e., magnetic systems Mel'nikov and Meshkov proceeded from the energy-
with coupling between the two degrees of freedom. action diffusion equation mentioned above by deriving a
We have mentioned that Kramers obtained two formulagunctional form forA in the LD limit, which bridges the two
for the escape rate, one valid in the so-called intermediate<ramers formulas. They then obtained the escape rate in the
to-high damping regime, and the other in the low dampingwhole damping range by multiplying their functional form
regime, where it is assumed in both cases that the energyith the Kramers IHD prefactor.
barrier is much greater than the thermal energy so that the The bridging between the two friction regimes has how-
concept of an escape rate applies. He mentioned in his pap@yer never been effected for magnetic relaxation of single-
however, that he could not find a general method of attacklomain ferromagnetic particles. Such a bridging formula is
for the purpose of obtaining a formula which would be valid important here because in the low-damping limit one often
for any damping regimg¢see(c) aboveg which was effec- encounters difficulties in implementing numerical simula-
tively solved by Mel’'nikov and Meshko{/7]. tions of the dynamics of the magnetization and longest lived

nd the canonical variablds, p) satisfy Hamilton’s equa-
'8ns, namely,

(1.2

"o P

krsT= - X~ Ey IKT)+ o expi ~ E,/KT). (1.4
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relaxation mode for the purpose of reproducing the exacandMq is the magnetic moment magnitude of a nonrelaxing
solution for the escape raf&1]. It follows that a formula for  particle. Equation(2.3), by introducing the orientation&9,

the escape rate valid for all values of the friction would be¢) of the magnetization vectdv may in turn be written as
useful(a) in view of its relative ease of computation afig

as a check on the accuracy of numerical simulations as this Mso_ 1 f9V(19 ) 2.5
formula, in principle, is able to qualitatively reproduce the vy sind de ¢ '
frictional behavior of escape rates.

The purpose of this work is to demonstrate how to bridge
LD and IHD magnetic Kramers formulas by suitably adapt-
ing the Mel'nikov-Meshkov procedure. Such adaptations are
necessary because, unlike mechanical particles, the uff-we now introduce as variable=cosd, Egs. (2.5 and
damped equation of motion of the magnetization of a single{2.6) assume the form of Hamilton’s canonical equativizs
domain ferromagnetic particle is the gyromagnetic equation.

(.,DSinﬁ——M—%(ﬁ (p) (2.6)

Thus the Hamiltonian of the system is the Gibbs free energy e ¥ ﬂ(x )= — E(x ) 2.7
which is in general not separable in terms the canonical vari- Ms do a4 de P '
ables of the problem. Furthermore, the magnetic system has

two degrees of freedom, namely, the polar and azimuthal .7 Y

angles. This is in contrast with the original Kramers problem PT M, ox Tx Xe)=—(Xe), (2.8

characterized by one degree of freedom and a two-

dimensional state space. Again, unlike that problem the inwhere E(X,¢)=(y/M{)V(X,¢) is the Hamiltonian of the
ertia of the particle plays no role with the result that evensystem. The se€itp,x}={q,p} constitutes the canonical vari-
though the magnetic system has inherently two degrees ables of the magnetic problem and consequently generates a
freedom, it still has a two-dimensional state space as in thewo-dimensional state space as in Kramers’s prohlém)—
Kramers problem. Having taken account of these considerl.2) (again referring to the undamped motjosith the dif-
ations, the results obtained for single-domain ferromagnetiéerence that unlike mechanical particles the Hamiltonian
particles with uniaxial anisotropy when a uniform magneticE(q,p) is no longer separable. Equatiofs7) and(2.8) de-

field is applied at an angle to the easy axis are compared tscribe the undamped motion of the system in the absence of
an exact solution in terms of matrix continued fractions. Thethermal agitation and may be used to sketch the phase space
range of applicability of this formula as the axially symmet- trajectories. We also note in passing that the distributdén

ric limit is approached will also be discussed. in phase space obeys Liouville’s theorem of conservation of
density in phase, namelgd/dt denoting a hydrodynamical
Il. PROBABILITY DENSITY DIFFUSION EQUATION FOR derivative:

SPINS IN TERMS OF ENERGY-ACTION VARIABLES
dW r?W (9W r?W

Th_e starting point of our investigation is the gyromagnetic at ﬁt 07X (7<P =0, (2.9
equation
dM which, by virtue of Eqs(2.7)—(2.8) reads as
ot~ Y(MXH), (2.9 dw  aw N AW AV GW

— =t = . .
. . o o dt gt M X dp dp IX =0 (210
where y is the gyromagnetic ratiayl is the magnetization

vector of a single-domain ferromagnetic particle, and thelf we include thermal agitation by regarding the Landau-
field H which may comprise the field due to the magneto-Lifshitz equation as the Langevin equation of the system Eq.

crystalline anisotropy and external applied fields is (2.1) becomeg12]
v M ay
H=-——. 2.2 —= —
M 2.2 ai y(MXH)-l—MS(MXH)XM, (2.11
HereV is the Gibbs free energy density. where this time

The equations of motion of the magnetization vector

namely(2.1) may be written as an equation for the rate of he — ﬂ"‘h (M) 212
change of the angular momentunof a spin namely gu )
- Mg with h,(t) being the normalizeds-correlated white-noise
P= UT_UXh’ 23 force due to thermal fluctuations, afmdis a dimensionless
damping constant. Now, E¢2.11) accounts for orientation
where changes of the magnetization only, so that the FPE obtained
from Eqgs.(2.11)—(2.12 will govern the distribution function
U= M h= _ N 2.4 of magnetization orientations on the unit sphere. Hence, we
Mg’ Ju’ ' have Brown's FPE12,13
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X &W_A2W+ _ﬁavw 1avW dW  ay [ 4 L aw+ Wav
e sing 0|5 s W L 9 at g | ax| T o AWK
N B 0 1 &VW+1(9VW 01 N 1 J &W+ W(?V o1
sind ag|sind ae VT age W @13 T a0\ 30 AWV l|1- 219

where in Eq.(2.13,
Equation(2.19 expresses the irreversible total rate of change

1 9 J 2 of the distribution function, i.e., irreversible evolution of the
A= _(Sinﬁ_ 4 — — (2.14  system from one phase point to an other.
sing 9 99 " Sif 3 de In order to adapt the Mel'nikov-Meshkov approach for
. ) mechanical particles to the problem at hand, we must con-
is the angular part of the Laplacian and sider the quasistationary regime where
M
TN:B S (2.15 dW

is the diffusion relaxation time3= v/kT, andv is the vol-
ume of a single-domain ferromagnetic particle. In the presgquation(2.18 then becomes
ence of thermal agitation, Liouville’s theorem of conserva-
tion of density in phase no longer holds, so that one has

daw vy

dt M,

X do do IX| (229

N W IV W

X dp Jde IX

dw &W+ vy
dt gt Mg

=DW, (2.16

o _ We proceed by introducing the reduced energy variable
whereD denotes a dissipation operator. We remark that if we

set x=cosd? and make the transformatioft—x in Eq.

(2.13, then the terrDW assumes the form e=BV(X, @) (2.22
DW— avy [i (1—x2)(M+BWﬂ) and transform Eqs2.19 and (2.2]) into energy-azimuthal
BMg | 9x Ix ax angle variablege, ¢) by using the chain rule. We have
+ t 9 (&W+ W& ) 21
1-x% dp |\ do B ae) ||’ 217 IW\  [de| [dW >
o | | o) “\ox) 1) 223
which is the form ofD corresponding to the Langevin Eq. ¢ ¢ ®
(2.11). We remark that we have split Brown’'s FPE into the
two equations namely IW IW ge\ [ IW
90 “\oe) Tlag) \as) » 229
dW_&W+7<9VaW NV IW - Pl 0P, N0\ o8],
Q@ a Mok e ae x) 218

(where for simplicity we do not use a new symbol for the
which describes the undamped precessional motion and tsansformed distribution functiorso that according to Egs.
entirely equivalent to Eq(2.1) or (2.5—(2.8), and (2.23 and(2.29) the dissipative term Eq2.19 becomes

.

dW_ ay ((98) d ) (o"s) ((9W)
ot A, ax) e | TG WG
5
de o Jdo «

de\ d de
Jde xo”e do «

N ay 1 d | [dW W de
BM1—x2| de| | de dg
¢ ¢ X
de d | [IW
7e) | w17,

} , (2.29

¢

o 1
BMg 1—x

¢

W+

de

&W)
]
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and the Liouville term Eq(2.21) reads as dw ay 5[ 9€ 2 1 de\2
at T BM, (1_")(07) 1 %)
dw vy (&s) (07W) (2.26 ¢ X
at x 90l - : d AW
dt  BMs\ox/ \de), X —| W+ ——J }] . (2.30
de de .

[
Now we have seen that (effectively the magnetic momen-

tum) and ¢ (the azimuthal ang)eare canonical conjugate in On equating the right-hand sides of E@25 and(2.30 we
the zero damping limif13,14). In this limit, the energy Obtain finally
V(X,¢) is a constant of the motion which is completely de- &8) 1 (&8) dx
X . 1-x%\ de Xd(p
oW
Ml e
¢l e

(1-x%)

tion, the energy is no longer conserved. However, in the de
crossover region the dissipation process may be perceived as
consisting of small changes in the energy of the system, i.e., x[i
in the crossover dissipation processis a slow variablgat de
given ¢) while ¢ (keeping the energy fixeds a fast variable.

This means that in the first approximation we may neglectvhere we have used E(.29. By introducing the dimen-
the effect of the operatorg{d¢). in the dissipative term Eq. sionless actiors via the differential equation

(2.25. However, the anglep is maintained in Eq(2.26

because unlike the case of very low damping one needs to ds o [ 0 1
retain in first approximation the effect of the coupling be- @_(1_)( Nox] ~ 15
tween the Liouville and dissipation terms which must be

taken into account if we wish to describe accurately theand using the chain rule again, we arrive at the energy-action
crossover region. Hence the dissipation operator containgiffusion equation

only derivatives with respect to and Eq.(2.25 becomes

scribed by Eqgs(2.7) and (2.8). Regarding the damped mo- (WV) ~a
W+ P

dx 23
de’ (2.32

de
de

W 9 ( +aW) 233
dW  ay (de| de JW Js de de |’ ’
At~ ol ax) ae | A0 o) W G
BMs | ox ¢’ X/ o gl o where we have suppressed the subscripts of the derivatives
as their meaning is now obvious. The action variable is
N ay 1 ((98) c?[(r?g) W+(07W> ]
BM-1—x2\ 90/ 9g )\ o0 N ) de 1 oe
BMs1-x%\ a0/ de || de) NI S:f (1_X2)(_>d‘p_ %
&= constant IX 1-x°d¢
(2.27 (2.34

In order to derive the energy-action diffusion equation one Here, we are interested in the critical energy trajectories
has to show thak depends onp only. This is readily dem- which are given by
onstrated by noting that the energy is supposed quasicon-

stant, so that we have g=¢gc, (2.39
5 ; wheree defines the energy contour through the saddle point
_[%¢ oe - of the energy from which the moments may overcome the
da(x,¢) ( X ¢(X’<P)dx+ a<p>x(x"p)d‘p 0, barrier. When the energy of the system attains this vajue

(2.29  the magnetization may leave the initial well, i.e., can reverse.
In addition, we remark that E¢2.35 constitutes a boundary

leading to the differential equation of the phase space trajeccondition for Eq.(2.29 whence it follows that the action

tories variable(2.34) is to be evaluated on the critical energy con-
tour. We emphasise that the solutiovi of Eq. (2.33 will

P effectively assume the Maxwell-Boltzmann distributions

(_8> deep in the wells and will change in a relatively narrow
dx de/, region about the top of the barrier, the behavior being analo-

@%_ Tos) (2.29 gous to that in the VLD case with the difference that the

(5) azimuthal dependence ¥ which in this case is described
@ by the left-hand side of Eq2.33 may not be neglected near

the top of the barrier. We further remark that EQ.34
This equation, by imposing a suitable boundary conditiondefines an action variable analogous to that introduced by
(the value ofx at the saddle point in geneyand solving for  Mel'nikov and Meshkov for mechanical particles. It is more
X guarantees that dependsexplicitly on ¢ only, and not on complicated, however, because we reiterate that unlike me-
¢ (see Appendix This means that we can rewrite E§.27) chanical systems, magnetic ones are not completely sepa-
as rable (the Hamiltonian is not additive ixx and ¢), so that
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with the exception of time, one cannot separate the variables 1 ) a?(cS—c$)?\ 12
in the correpondingdeterministi¢ Hamilton-Jacobi equa- K=5 (wc T)
tion. As Eq.(2.33 is of the same form as the energy action- @cTN

diffusion equation of Ref.7] (details of the derivation of the (cS+c$)a] A(as))A(as,)

Mel'nikov-Meshkov theory is given in Refl7]), it follows (2.4
that the magnetic prefactor has a form identical to that for
mechanical particles. For a double-well potential, this pref; . .
actor in the intermediate-to-low dampiri.D ) limit (cross- We note that the frequencies andw, in each well are here

over region where neither IHD nor VLD treatments apply is respectively given by

2

KTsT-
A(as;+asy) o7

[7] w;=+cich, i=12. (2.42
A(asy)A(as,)
A(as;,as,;)= W, (2.36 I1l. APPLICATION TO THE PROBLEM OF RELAXATION

OF A SYSTEM HAVING UNIAXIAL ANISOTROPY
WITH A UNIFORM FIELD AT AN ANGLE TO THE
where ANISOTROPY AXIS

1 (e dz We now apply the above considerations to the calculation
A(§)=exp[—f |n(1_ef§(22+1/4)) > of the greatest relaxation time of single-domain ferromag-
mJo z°+1/4 netic particles having uniaxial anisotropy when an external
(2.3 uniform magnetic field is applied at an angle to the easy axis
[i.e., in the(x, 2 pland. The dimensionless free Gibbs en-
is the prefactor for a single escape path,as; is the energy ergy is given by
loss per cycle in well [justified following Eq.(3.4) below]
and g(X, @)= — ox?— éx cosy— E\1—x? siny cose,
(3.2

s = (1_X2)(9_8d¢_iz(9_8dx, i=1,2 where ¢ is the angle the direction of the magnetic field
e=s, X 1-x°4

makes with the easy axis of magnetization. This potential has
(2.38 a saddle point in the Greenwich meridiar=0 (zero longi-
tude and an absolute maximum at= 7. Furthermore, in

is the magnetic action in the well The line integral is taken Ed. (3.1) we have introduced the notatiofiduced barrier

G

along the direction of precession in well height and reduced field parameter

Equation(2.36) is an accurate formula for the magnetic
prefactor in the crossover region. In order to write down a o= Kv _ MgH 3.2
formula for the magnetic prefactor which is valid for all val- kT’ kKT ° '

ues of the damping, we recall that the IHD prefactor derived

by Brown has essentially the same form as that for mechaniHere,K is the anisotropy constarit] s the saturation magne-
cal particles and i§8,13,15 (the details of derivation of this tization, andH is the external uniform magnetic field. Before
prefactor which are rather lengthy are given in Geoghegaiproceeding, we note that it is customary to introduce the
et al. [15] and also derived in detail using Langer's methodreduced field parametér defined a§16]

[10] in Ref.[17]):

&
h=—. 3.3
1 ,  @(cg—c)?| M (cF+cDa 20 (33
20wcT wet 4 - 2 '
e (2.39 In order to evaluate the escape rg2e4]) for this prob-

lem, one must first numerically evaluate the action integrals
(2.38 as well as Eq(2.24. The quantityA({) is best cal-

wherec;” is the coefficient of the second term in the Taylor cyjated by using its rerpresentation in terms of the comple-
expansion of the potential energy about the saddle point ighentary error functiowviz. [7]

terms of the magnetization direction cosines, §d3]
. erfo\pZ/2)
oo\~ e5eS 240 A“):ex”[ P |

so that the product of Eq$2.23 and(2.26) yields the mag- We evaluate the action integra®.38 by reiterating that in
netic prefactor in the whole damping range. It follows that athe VLD limit, the free energy will be almost a constant of
formula for the escape rate of magnetic moments across thtbe motion. Hence, on using E(.29 viz the fact that the
anisotropy potential barrier which is valid for all values of energy is almost conserved and the Hamiltonian @BqL),
the damping is we have the differential equation
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lr — o I
~ T L - Wixe)=2 3 am(ONnP()E™, (3.6
08 ¢ y P IR ~N S0 m=0c1 '
0.6 N where
/ //' \\ \
. 0447/ N . N (1) 21+ 1)(1—m)! -0 3
02 1m=(=1) dn(l+my - Y @9
0 and theP["(x) are the associated Legendre functigas).
\ We also havg19]
02} 4 \
7 Y B (I—m)!
H . m _ m
0 n 2r P| (X)_(_l)m(|+m)| P| (X)

12

FIG. 1. The phase spaca, ) for o=10 andy==/6, andh 1 he time-dependent Fokker-Planck equation may be reduced

=0.25 (solid line); ¢=/4, andh=0.33 (small dashed line tO the set of differential recurrence relations
= /3, andh=0.4 (large dashed line

2 r
al,m(t): 2 2 dl,m,l+r,m+sal+r,m+s(t)y (3.9
dx h(1—x?)sinysine r=-2s=-r

de  x\1—x%2+hcosy1—x2—hxsinycose where thed, /v are the elements of Brown’s Fokker-
(3.9 Planck operator and have been given in detail elsewhere
[20]. The thirteen-term differential recurrence relati@?8)
This differential equation must be integrated subjected to th@ow may be cast into the tridiagonal fofr20]:

boundary condition )
Ci(H)=Q, C_1() +QC(H+Q Ciia(t), (3.9

x(0)=xc, @9 whereC(t) is the column vector given by
since the saddle point of the free energy surface ig-aD. as (1)
This boundary condition is needed since we are required to Ay o+ 1(1)

evaluate the action integral on the critical energy trajectory.
We remark that the solution of E¢3.4) with the boundary

condition (3.5 is unique on the intervdl0,2s]. This proce- Gi(t)= 31 ,2(1) ' (3.10
dure avoids solving the usual quartic equation invol{/Ed| 32|—1,7'2|+1(t)

in the determination ok as a function ofp, together with all :

its disadvantage&selection of the correct root in particular ap—12-1(1)

Having solved this equation numerically faty), one may . )
calculate the actions in each well. Here, these integrals ar@d the elements of the matricp andQ, are expressed in
equal because the regions contributing to the action variabld§ms of thed, ./ o [21]. The smallest eigenvalue of the
in each well are symmetric. The contours of integration ard-0kker-Planck operator may be calculated by calculating the
delimitated by noting that the solution of E@.4) is periodic ~ smallest eigenvalue of the §88) matrix[20]
with period 27 and exhibits a maximum ap= 7 for any + .

[Q1—Q1A2Q; ]

value ofh and the angle/ (see Fig. L This fact may be used S=—

. . . h n—1 n—-1 ’
to define the regions of integration, namelys @ < 7 for the N 5 _
action variable in the first well, and< ¢<27 in the sec- |+nZz nl;ll Qm) ( kll An—k+1Qn—k+1H
ond. To put this in another way, the same arc length is in- (3.1
volved in the calculation of the two action variables corre-
sponding to the two wells, so that the energy loss per cycle invherel is the (8x8) identity matrix andA, is the infinite
each well is the same. The actual calculation of the linematrix continued fractiofi20]
integrals(transformed into ordinary integrals usually per-
formed numerically. The sole exception to this is the calcu-
lation of the action variables when a small field is applied n _
perpendicular to the easy axis and is illustrated in section 4 ~Qn=Qy [ Qn+1
of the present paper. ~Qni1=Qnii—a———Qnss

Having evaluated the escape rate rendered by(E¢1) Qn+2 (3.12

as described above, we compare the result with that obtained '
by calculating the escape rate exactly. In order to accomplisiThis procedure allows us to compute the escape rate of the

this, one expands the time-dependent probability density omagnetization from a stable state of orientations for a wide
the basis of the spherical harmonics, namely, range of anisotropy parametarsand « and avoids the solu-

n [
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tion of a high order polynomial, provided that the smallestapplied. Indeed, if this condition is violated, the only process
eigenvalue of Brown’s Fokker-Planck operator is signifi-involved is fast relaxation inside the only remaining well and

cantly lower than all the other eigenvalues. not barrier crossing.
We note that in order to be able to compare the rate given
by Eqg.(2.41) and those obtained from the diagonalization of IV. LIMITING CASES
Eq. (3.12, all approximate formulas given in this paper
should be divided byr. In fact, on considering Eq2.13 In order to check our formuld2.41), we study below
and converting it to an eigenvalue problem we have known limiting cases which ar@) the explicit evaluation of

the escape rate in the VLD regime for escape from a single

1/9e oW 9e dW well already considered by Klik and Gunther affg) the
2N T yW _(a_x 2o J0 Ix calculation of the energy loss per cycle for a transverse ap-
@ ¢ e plied field as already obtained by Garaminal. [23].
IW oV First, we show how to obtain the Klik and Gunther for-
=—|(1-x®)| —+BW— mula from the single-well version of EqR2.41). For a single
ox ox IX
well, we have
1 9 |[dW Vv
- = _ 2,.C_ .C\2\1/2
+1—X2 de (&go_i_ﬂwr?(p”' (3.19 K= ! wé-l—M
2wcTy 4
where we have again set cosd in Eq. (2.13. This eigen- C, ~C
. . . . (c5+c)a
valug problem is solved in term; of the matrix continued —— A(aS)K1sT) 4.1
fraction (3.12. However, in deriving Eq(2.33 we have

multiplied Eq.(3.14) by «. Thus we have implicitly consid-

ered the following eigenvalue problem where only one term is retained in the expresdibd) for

kg7 Since there is only one well. In the limit of smal| Eq.

Jde W  Js (9\/\/) (4.1) becomes

2>\'TNW+(—————

X do Jdo IX 1
K= _A(aS)KTST. (42)
JW v 27y
=a—|(1-X?)| —+BW— _ _
X IX IxX Now, the behavior oA(¢) for small £ will be demonstrated.
In that limit, the exponential in Eq2.37) may be expanded
+ _x 9 ﬂv+3wﬂ (3.15 to first order in{ to yield
1-x% dp || do de) |’ '
1 * dz = In(z2+ 1/4)
with \’=a\ (we note in passing that singe>0\|=a\, A(f)~exp — |n§fo 22+1/4+fo Zra 97|
will still be the smallest nonvanishing eigenvalud his 4.3

means that in order to compare Kalmykov’s solution with, in
particular, our formula(2.41) we have to divide it bye, Now [24]
including the generalization of the Klik and Gunther LD for-

mula for a double-well potential, namely, =In(Z+14)
— " dz=0, (4.9
o Zz°+1/4
CYS]_
KLDTN= 7~ KTST, (318 5o that Eq(4.3) becomes
where we have taken into account that the actions in each A(é’)mex;{i(ﬂ-ln 0)
well are equals;=s,. m

In addition, in the context of numerical calculations, we
emphasize that care must also be taken in solving the differ- ~{ (4.9
ential equatior(3.4). Namely, this equation is \{alid in so f_ar and Eq.(4.2 finally reads
as the concept of an escape rate has a meaning. In particular,
according to the Stoner-Wohlfarth calculation of the critical as
reduced fielch, [12,22, one must be aware that the escape K= 5 KTsT, (4.9
rate problem is meaningful only if N

which is, in our notation, the formula of Klik and Gunther.
h< 1 . (3.17 Here we evaluate the action integral in Eg.38 for a

(coS™ yr+sine’ y) 32" small uniform transverse applied field, yet large enough to

ensure departure from axial symmetry. This is the only case

which guarantees that the Hamiltonig8.1) retains its in which the calculation may be carried out explicitly with-

bistable structure, so that the concept of an escape rate can bet encountering severe algebraic difficulties. It will also
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serve to illustrate the difference between the action integralvell only. As the reduced field parameteris small and as
used by Garaniret al. which is evaluated by expressing on the critical energy curve we still have-li~1, we may
directly as a function of and the action integral used in the rewrite Eq.(2.38 as

present problem which is calculated by using the differential

Eq. (3.4) of the trajectories in thex(¢) space. We remark S %f ﬁd B a—sdx (4.14
that Garaniret al.[23], by noting that the potential due to a ! e=sg OX ¢ do '
transverse field is a symmetric bistable potential, showed

how the action integral may be calculated by considering théollowing Garaniret al.[23] and Coffeyet al.[27], one can
result for a single potential well only. Here, we will deter- ignore the second term in this integral as it is of the order
mine the action integrals in each well separately and we shah®? so that, accounting for the two phase paths given by Eq.
show how the action integral may be reduced to that of Gat4.13 we have

ranin et al. We first note that Eq(3.4) with = /2 is

f % do+ f % 4 (4.19
S~ — —do, .
dx_h (1—x?)sing @ Y )emeg 0x ¢ e=eg IX ¢

¢ x(y1=x“—hcose) whereel andec denote the critical energy values associ-

ated with the two phase patli4.13. These two values are
equal. We have simply introduced the notatieg, ec in
order to emphasise the difference between the respective
contributions of the two possible integration paths.

Again, following Garaninet al. [23] we utilize the fact

This equation is singular at the equator 0. If = 7/2 the
boundary condition for Eq4.7) is x,=0 (because the saddle
point is at the equatof = /2 for a transverse fiejdthus we
make the change of variable=x? and transform Eq(4.7)
into an equation fou

that
du (1—u)sing J
—=2 , 4.8 € __
de (V1—u—hcose) 8 X 20X (4.16
with the boundary condition so that Eq.(4.19 can be finally evaluated to yield
u(0)=0. (4.9

S]_: _40'\/H

T @ 0 ¢
Jo —S|n§d<p+L smid(p

Now, the field is relatively small so that, following Garanin
et al. [23], whenh—0, we may ignore terms of the order ~160+/h. (4.17
h%2, We may also write in the vicinity of the saddle point

Sinces;=s, and that the prefactok({) Eq. (2.37) behaves

1-u~1 (4.10  as¢in the limit of small energy losses per cycle, we find, by
evaluating the prefactor for the double-well potential Eqg.
Hence Eq.(4.8) becomes (2.36),
u . a252 S
—(¢)=2hsing, 4.1 ot
de (o) @ (4.11 A(as;,asy) Zas, as 8a0\/ﬁ, (4.18
which may be readily integrated between 0 antb yield in agreement with the calculation of Garamnal. [23]. We
reiterate that the splitting of the action integral in E4.15
u(¢)=2h(1-cose), (412 arises because the differential equatidn?) admits of two
) ) ) solutions corresponding to the two possible phase trajecto-
leading to the two possible solutions fef¢) ries. Such a separation in the precession directions is, in gen-
eral, not possible for arbitrary (#0) because the solution of
X(¢)=+2\hsin7 . (413  EG.(3.4) with boundary condition3.5) is then unique.

. . . . V. RESULTS AND CONCLUSIONS
The two phase trajectories are equally possible. In physical

terms, the solution with the plus sign corresponds to spins We have indicated above how a formul241) for the
rotating clockwise, the minus sign to spins rotating anti-escape rate for single-domain ferromagnetic particles which
clockwise. We note that for a transverse uniform applieds valid in the whole damping range may be obtained. This is
field, this is always so, as the solution of E4.7) cannot be  accomplished by neglecting the azimuthal dependence of the
carried out without Eq(4.9) which involves the square of distribution function in the dissipation term.
the magnetic momentum. When one tries to apply the formalism described earlier to
Having expressed in terms of ¢ one may evaluate the a particular problem in magnetism, we remark that the inte-
line integrals as follows. As the actions in each well aregration paths necessary to calculate the actions in each well
equal, it suffices to calculate the action variable in the firstare obtained by solving Eq3.4) with boundary condition
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log,,(kTN)

0 5 10 15 20
a

FIG. 4. loggk 7y as a function ofo. The solid line is the exact
solution. Diamonds denote formulé2.41) for «=0.001 (LD);
squares denote formu(@.41) for = 0.1 (crossover, and triangles
denote formulg2.41) for «a=10 (IHD).

rates are normalized with respect to the characteristic diffu-
sion timery so that the problem of the choice of the starting
stochastic differential equation namely Landau-Lifshitz or
Gilbert is irrelevant. We remark that the qualitative behavior
of the exact escape rate is well reproduced over the whole
damping range, and especially in the crossover region where

: . _ neither the LD, nor the IHD formulas are valid.
(3.5. We note from Fig. 1 that the phase trajectories are We have plotted on Fig. 4 lag(xy) as a function ofr

open(unlike th_ose for mgchamcal particless one may X" for3 typical values of the damping parameterlt is appar-
pect fora motion of rotational typl@5]. These phase trajec- ent from this figure that the agreement between @)
torl_es are unique f_or any anglg exc_ept for = /2 for ._and the exact solution is good for largeas expected. The
Wh.'Ch two open traj_ectques are possible. The.se open traJe?iualitative agreement in frictional behavior may be ex-
tories are symmetric with rgspect to the straight I)n.eo.. plained as follows. The behavior of the escape rate as a func-
One may also remark that in o_rder to palcul_ate action integjon of i for large o is approximately Arrheniuslikg8] and
grals such a£2'3]?) tragsformedr:nt? ordm’TlIry |3t?grals, ON€ this behavior arises from an equilibrium property of the sys-
mtegrates ovep from ¢ t(_)mnt e first Well and fromm N tem (namely the Maxwell-Bolttzmann distribution at the bot-
2m in the second. Th's. IS bepause as Is apparent from thﬁ‘)m of the wel). On the other hand, the frictional depen-
open nature of the trajectories and from Fig. 2, both thedence of the escape rate is due to nonequilibrium

Hamiltonian and the phase trajectories attain a maximum a(Hynamica] properties of the system and so is contained in

P the prefactor only, the detailed nature of which depends on

Ilr,1 'T('g 3 thehll?garithm of.thfe exalct, LD and ':"D' gnd the the precise form of the asymptotic expression used to obtain
Mel'nikov-Meshkov magnetic formulé.41) are plotted asa i | other words, not only does one have to postulate a high

function of the logarithm of the friction parameter All the o ier (hence a Maxwell-Boltzmann distribution at the bot-
tom of the wel), one must also postulate the behavior of the

FIG. 2. 3D plot of the Hamiltonian as a function dfand ¢ for
= /6, andh=0.2. The valuer=20 has been arbitrarily chosen.

1 T distribution function at the barrier top. We remark that as
AN emphasised by Kramers, it is hardly ever of any practical
05 importance to improve on the accuracy of the IHD or LD
formulas themselves because in experimental situations
0 where relaxation is studied, one is left with estimates of the

prefactor within a certain degree of accuracy which is diffi-
cult to evaluate. For example information atis scanty. On

the other hand it is important to predict the behavior of the
relaxation times as a function of friction using analytical
methods such as the one described in this paper because of
the detailed information such methods yield concerning the
-3 -2 -1 0 1 mechanisms underlying the relaxation process.

Referring again to Eq.2.41) we emphasise that this for-
FIG. 3. loggkmy VS logga for o=10, = /6, andh=0.25. Mula can be used when the angkehe field makes with the
The solid line is the exact rate; the dotted line is Eg41). The  €asy axis is large enough to ensure significant departures

dashed line is Brown’s nonaxially symmetric IHD formula and the from axial symmetry{26] (see explanation belowNever-
dot-dashed line is the Klik-Gunther LD formula for the double-well theless, as one can see from Fig. 5 the calculation fails be-
potential (3.16). cause the assumptions made in the derivation of the IHD and

IOgu)(KTN)
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APPENDIX: DETAILS OF DERIVATION OF EQ. (2.33

log,(KTN) In this appendix we give some details concerning the deri-
vation of the energy-action diffusion E(.33 for magnetic
dipole moments. In particular, we explain why we may de-
rive Eg. (2.30. We have inferred in the text thatand the
derivatives ofe with respect tox and ¢ are not explicit func-
tions of ¢, so that these may be taken out of the outer deriva-
0 15 30 45 tive sign with respect t@. This may be justified as follows.
v We recall that in the LD limit the motion is quasidetermin-

FIG. 5. logy« 7y as a function of the anglé (degreesfor o istic. Thus the total energy is approximately conserved.
=10, h=0.2. (1) Stars denote formulé2.4]) for «=0.001(LD);  Hence we have the equations of the trajectories in phase
(2) triangles denote formulé2.41) for «=0.1 (crossover. The cal-  space
culation fails for small angles.

e=f(X,¢)~constant. (A1)

VLD asymptotic formulas are invalid for small departures g, taking the total differential of this equation we have
from axial symmetry{26,27]. Thus our formula Eq(2.41)

may not be used in the neighborhood of uniaxial crossovers de=df(x,¢)=~0, (A2)
because such action integrals as Ef38 are zero for any ) . _ .
angle ¢ (for small field$ or small departures of the latter NOW. if the energy is constant, we will have, solving Eq.
angle from zero in any field. (A2)

In conclusion, it is apparent that ER.41) provides a —

o ; X=0g(¢). (A3)

good qualitative account of the behavior of the exact escape
rate for magnetic particles having uniaxial anisotropy whenFurthermore, if the energy iguasiconstanas in the present
an external magnetic field is applied at an angle to the easgroblem we will then have
axis. We finally remark that although our form®41) pro-
vides a good approximation to the exact escape rate when the x~0(¢).
potential is truly non-axially symmetric, it has more limita-
tions than its mechanical equivalent as it cannot be used for
small angles) and low fields since the action as rendered by de
Eq. (2.38 then vanishes. Thus, if one desires a formula (5) =01[x(¢), ], (A5)
which embraces both uniaxial and frictional crossovers, one 4

must suitably combine the techniques developed in Refersay, if the energy constant, and if it is quasiconstant, then
ence[23] with those of the present paper.

(A4)

hus

de
(7) ~01[x(¢), ], (A6)
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